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Understanding of macromolecular function in many cases

relies on the comparison of related structural models.

Commonly used least-squares superposition methods suffer

from bias introduced into the comparison process by the

subjective choice of atoms employed for the superposition.

Difference distance matrices are a more objective means of

comparing structures as they do not depend on a particular

superposition scheme. However, they suffer from very high

noise originating from coordinate errors. Modern re®nement

programs allow the rigorous estimation of standard uncer-

tainties for individual atomic positions. These errors can be

propagated through the calculation of a difference distance

matrix allowing one to assess the signi®cance level of

structural differences. An algorithm is presented which

produces an intuitive graphical representation of difference

distance matrices after normalization to their error levels. Two

examples where its application was revealing are described.

Alternatives are suggested for cases where rigorous estimation

of individual errors by the inversion of the full least-squares

matrix is not feasible. The method offers an unbiased way to

detect signi®cant similarities and differences between related

structures, as encountered in studies of complexes and

mutants or when multiple models are obtained from experi-

ments such as crystal structures involving non-crystallographic

symmetry or different crystal modi®cations, or ensembles

derived from NMR spectroscopy.
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1. Introduction

With the growing speed of modern macromolecular structure-

determination techniques, methods for rapid and objective

comparison of structures become ever more important. On

one hand, structural homologies in seemingly unrelated

proteins have to be detected when novel structures are

determined; on the other hand, small conformational differ-

ences in closely related structures have to be interpreted when

molecular function is elucidated by comparison of complexes

and mutants. Furthermore, in the case of NMR investigations

or in the presence of non-crystallographic symmetry in a

crystal structure determination, the result of the experiment is

an ensemble of molecules and valuable information can be

derived about the conformational ¯exibility and rigidity by

analysis of this ensemble.

Currently, the majority of structure comparisons are based

on the least-squares superposition of speci®c atoms and a

number of implementations are available (e.g. Kabsch, 1978;

Jones et al., 1991). This approach has been successful in many

cases, but suffers from the fact that the results are strongly

in¯uenced by the choice of atoms to be superimposed: a wrong



choice of the superposition set may obscure signi®cant and

important differences. An iterative procedure that auto-

matically identi®es the optimal set of atoms to be used for

superposition taking into account the different precision of

different atoms in a structure has been presented (Peters-

Libeu & Adman, 1997), but was found to still face dif®culties

when motions of large domains occur. Several approaches that

are based on the analysis of backbone torsion angles have

been suggested to compare structures of, for example, mole-

cules related by non-crystallographic symmetry (Kleywegt,

1996). Very recently, a method which employs experimental

data to calculate electron-density maps whose local density

correlation is then used to assess the signi®cance of structural

differences has been presented (Kleywegt, 1999). In the

present paper, a method for the comparison of models for

protein structures is described where the different levels of

precision in different models and in different parts of the

models are explicitly included in the assessment of whether or

not regions in the different models are similar.

When two conformations of a molecule are compared, the

central question is whether the relative positions of atoms are

different. As all structural models contain errors, different in

this context means signi®cantly different with respect to the

precision of the atomic coordinates in the structural models

being compared. For this purpose, the representation of

atomic positions in Cartesian coordinates is clearly in-

appropriate and the distance matrix, i.e. the matrix of the

distances between all pairs of atoms within a molecule,

represents a suitable alternative. The distance matrix of a

molecule contains all the information about the geometry of a

molecule except its handedness and, if all interatomic

distances are known, can be used to reconstruct its three-

dimensional structure (Crippen & Havel, 1988). In the case of

proteins, the most commonly used distance matrix is that of

the pairwise distances between C� atoms (Philips, 1970).

C�ÐC� distance matrices have been used to great effect for

the recognition of secondary and tertiary structure (Rossmann

& Liljas, 1974; Kuntz, 1975) and for fast scoring of fragments

used in model building (Jones & Thirup, 1986).

Matrices constructed as the differences between distance

matrices, the so-called difference distance matrices, represent

a sensitive and objective measure of differences (and simila-

rities) between related structures. First proposed by Nishi-

kawa & Ooi (1974), difference distance matrices have been

used in a variety of contexts. One class of applications

concerns the identi®cation of secondary structure and

substructures (Richards & Kundrot, 1988) and the detection

of structural homologies (Padlan & Davies, 1975; Holm &

Sander, 1993) in different molecules. The other class includes

the use of difference distance matrices in the comparison of

identical molecules under different circumstances, as in the

discovery of the thermal expansion of myoglobin (Frauen-

felder et al., 1987), the investigation of lysozyme at different

hydrostatic pressures (Kundrot & Richards, 1987) or the

analysis of molecular-dynamics simulations (Elber & Karplus,

1987). Recently, Nichols and coworkers employed difference

distance matrices for the identi®cation of rigid domains

(Nichols et al., 1995), forming the basis for the subsequent

description of conformational changes (Nichols et al., 1997).

There is, however, a serious drawback to difference distance

matrices: as their elements represent small differences

between relatively large numbers, they are intrinsically noisy.

Modern crystallographic re®nement programs deliver,

albeit at substantial computational cost, accurate estimates for

standard deviations of re®ned parameters by inversion of the

full least-squares matrix (Sheldrick & Schneider, 1997; Tickle

et al., 1998). In this paper, we describe how these estimated

standard uncertainties (s.u.s) on re®ned parameters can be

propagated through the calculation of a difference distance

matrix so that the signi®cance of the differences can be

assessed more precisely.

Two examples are described for which the use of error-

scaled difference distance matrices was instrumental in

de®ning functional properties of the investigated molecules. In

the ®rst example (mersacidin, a 20 amino-acid antibiotic

described in the accompanying paper; Schneider et al., 2000),

error estimates were available from full-matrix inversion and

¯exible and rigid parts of the molecule were identi®ed by

comparison of six molecules related by non-crystallographic

symmetry. In the second example (tryptophan synthase, an

enzyme with 660 amino acids), individual positional errors for

the atoms were not available. In such a case, in principle, a

variety of methods can be used to derive approximate values

(e.g. Cox & Cruickshank, 1948; Cruickshank, 1949;

Murshudov & Dodson, 1997). We have used an approximation

based on the recently proposed diffraction precision indicator

(DPI; Cruickshank, 1999) to place errors in different struc-

tures onto a common scale and have exploited the experi-

mentally observed correlation between s.u.s and B values in

order to derive estimates for individual coordinate errors.

Inspection of the resulting error-scaled difference distance

matrices between different complexes of tryptophan synthase

allowed the identi®cation of a rigid, but moveable, domain

whose motion plays a central role in the function of the

enzyme.

In both cases, the interpretation of the distance matrices in

terms of conformationally invariant regions to be used for

subsequent least-squares superposition was greatly facilitated

by an intuitive graphical representation, which is described in

x2.5 of this paper.

2. The method

2.1. Definition of the difference distance matrix

For a given conformation a, the elements of the distance

matrix Da
ij are the distances between atoms i and j in a

molecule,

Da
ij � jri ÿ rjj; �1�

where ri and rj are the Cartesian coordinate vectors of atoms i

and j. The elements �ab
ij of the difference-distance matrix for

two conformations a and b are
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�ab
ij � Da

ij ÿDb
ij: �2�

If �ab
ij is positive, the interatomic vector between i and j in

conformation b is contracted with respect to a. Conversely,

negative elements of the difference distance matrix indicate an

expansion of the interatomic vector. If �ab
ij is zero for a group

of atoms, this group can be considered as conformationally

invariant with respect to conformations a and b. Owing to the

presence of errors, this condition has to be loosened in prac-

tice and conformational invariance is assumed if |�ab
ij | is

smaller than a certain threshold (e.g. Nichols et al., 1995).

2.2. Estimated standard deviations for the elements of a
difference distance matrix

Upon convergence of a least-squares re®nement of a

structural model against crystallographic data, variances and

covariances of the re®ned parameters (typically coordinates

and B factors) can be estimated by inversion of the full least-

squares matrix and used to calculate estimated standard

uncertainties for the re®ned parameters themselves and

derived properties (such as bond lengths and angles; Sands,

1966; Rollett, 1970; Huml, 1980). This requires massive

calculations but is feasible with currently available computer

programs such as SHELXL97 (Sheldrick & Schneider, 1997)

or RESTRAIN (Tickle et al., 1998) for proteins of modest size.

The largest system for which a full-matrix inversion has been

reported so far is the 1.25 AÊ structure of the cholera toxin

B-pentamer containing 5 � 103 amino acids corresponding to

6310 atomic sites (Merritt et al., 1998).

To describe the uncertainty in atomic coordinates of indi-

vidual atoms, the program SHELXL97 calculates a `radial

positional error' �r;i for every atom i, taking into account the

variance of the coordinate along the crystallographic axes and

the covariances (i.e. the off-diagonal elements of the inverse of

the LS matrix) between them (G. M. Sheldrick, personal

communication). Neglecting the covariance terms for atoms i

and j, this error estimate can be used to obtain a ®rst-order

approximation of the error for the element Da
ij of a distance

matrix,

��Da
ij� � ���a

r;i�2 � ��a
r;j�2�1=2: �3�

In principle, the expression for ��Da
ij� can be evaluated

rigorously employing the covariance between all re®ned

parameters contributing to the calculation of ��Da
ij�. This

would, however, require the full variance/covariance matrix to

be accessible at the time when the ��Da
ij�s are calculated.

Given the s.u.s of the elements of the underlying distance

matrices ��Da
ij� and ��Db

ij�, the s.u.s of the elements of a

difference distance matrix can be estimated as

���ab
ij � � ��2�Da

ij� � �2�Db
ij��1=2; �4�

again neglecting the covariances between the contributions.

Combining (3) and (4), a simple expression for the esti-

mated standard deviation of an element of the difference

distance matrix is obtained,

���ab
ij � � ���a

r;i�2 � ��a
r;j�2 � ��b

r;i�2 � ��b
r;i�2�1=2: �5�

This expression can be evaluated without the full matrix being

available at the time of its calculation.

2.3. Error estimates in the absence of calculated s.u.s

In many cases, the inversion of the full least-squares matrix

is not feasible owing to its sheer size, and estimates of the

coordinate error of individual atoms have to be derived by

other means. Commonly, estimates for the mean coordinate

error in a crystal structure are determined using the methods

of Luzzati (1952); for a critical discussion of this practice, see

Cruickshank (1999) or Read (1986).

Recently, Cruickshank (1999) has reviewed the problem of

assigning accurate uncertainties to atomic coordinates in

macromolecular crystal structures. He presented an empirical

formula that describes the in¯uence of the number of fully

occupied atomic sites Ni, the number of re¯ections nobs

employed in re®nement, the completeness C and the

maximum resolution dmin of the diffraction data and the ®nal

value of Rfree on the positional error �DPI
r (Bavg) of an atom

with the average B factor Bavg of the model,

�DPI
r �Bavg� � 31=2�DPI

x �Bavg� � 31=2�Ni=nobs�1=2
Cÿ1=3Rfreedmin;

�6�
where DPI stands for `diffraction-component precision index'

and �DPI
x (Bavg) stands for the corresponding coordinate error.

Note that this formula does not give estimates for the absolute

errors of individual atomic coordinates, but allows the errors

in different models to be put onto a common absolute scale to

which the individual positional errors can be related.

Studies of coordinate precision in crystal structures have

invariably identi®ed the atomic B factor to be highly corre-

lated with the coordinate error (Chambers & Stroud, 1979;

Daopin et al., 1994; Stroud & Fauman, 1995; Tickle et al., 1998;

Cruickshank, 1999; Parisini et al., 1999). Different para-

metrizations have been described, the general result being that

the higher the B value, the larger the coordinate uncertainty.

Therefore, in a ®rst-order approximation, we can assume a

linear relation between the estimated positional error ~�r;i and

the B factor Bi of an atom i of the form

Figure 1
Radial positional error (full lines) for C� atoms for six molecules of
mersacidin as determined by SHELXL97 after inversion of the full least-
squares matrix. Values for different molecules are shown in different
colours; assignment is given in the ®gure. The broken lines represent the
B values of the corresponding atoms.



~�r;i �
�DPI

r �Bavg�
Bavg

Bi; �7�

where correct normalization is achieved through division by

Bavg. The values obtained for ~�r;i can then be used to substitute

the s.u.s, �a
r;i etc. in (5).

2.4. Error-scaling of difference distance matrices

Prior to display, each element of the difference distance

matrix �ab
ij is normalized by dividing it by its error ���ab

ij � to

obtain the elements of the error-scaled difference distance

matrix,

Eab
ij � �ab

ij =���ab
ij �: �8�

The elements of this matrix are a measure of the signi®cance

of a change in a distance between two atoms i and j for two

structural models a and b.

2.5. Representation of distance matrices

Difference distance matrices can be immense in size and of

overwhelming complexity, necessitating an intuitive repre-

sentation to expedite their interpretation. We have devised

(Schneider, 1996) a scheme in which the matrix is shown as a

two-dimensional plot. Each element of the matrix is displayed

as a colour-coded square to represent the change in distance

between two atoms: blue stands for a positive (contraction)

and red for a negative (expansion)

change in the length of the corre-

sponding interatomic vector. Absolute

values are indicated by the intensity of

the colour, which is ramped from light

to full, full colours representing larger

values. The lowest and the highest

values to be displayed are user-de®ned

in order to suppress noise and use the

dynamic range of the colour-ramping

scheme optimally.

The maximum size of a matrix that

can be displayed on an A4 sheet of

paper while still allowing clear visual

inspection is about 150� 150 elements.

Therefore, for proteins containing

more than a user-de®ned number of of

amino acids, the matrix undergoes a

binning procedure before being

displayed: a binning factor N is chosen

such that the dimension of the resulting

matrix is less than the user-de®ned

limit; then N � N submatrices are

collapsed to the element with the

largest absolute value; ®nally, this

value is stored as an element of the

binned matrix. Using this procedure,

all relevant information about differ-

ences between structures is maintained

while presenting the information in a

more digestible format. Subsequently,

selected regions of the original matrix

can be inspected at full resolution.

3. First example: flexibility and
rigidity in mersacidin

Mersacidin is a polypeptide antibiotic

containing 20 amino acids that crys-

tallizes with six molecules in the

asymmetric unit. The structure was

solved and re®ned against merohed-

rally twinned data to 1.06 AÊ resolution
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Figure 2
Difference distance matrices and error-scaled difference distance matrices for the C� atoms of the six
molecules of mersacidin. In the lower left triangle, ordinary difference distance matrices for all pairs
of NCS copies are shown. The colour coding is according to the bar on the lower left: all changes in
distances smaller than 0.3 AÊ are shown in grey; differences in distances between 0.3 and 2.0 are
shown using a colour gradient, where red stands for expansion and blue for contraction, light colours
represent small changes and dark colours large changes; all differences larger than 2.0 AÊ are shown
as full blue and full red, respectively. The blocks in the upper right triangle show the error-scaled
difference distance matrices for all pairs of molecules. Here, all differences lower than 3.0���ab

ij � are
mapped to grey. Changes greater than 3.0���ab

ij � and smaller than 5.0���ab
ij � are colour coded using a

scheme analogous to that used for ordinary difference distance matrices.
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as described in the accompanying paper (Schneider et al.,

2000). The conformations of the six molecules are similar to

each other, with a mean r.m.s.d. for all 15 possible pairwise

least-squares superpositions (using all C� atoms) of 0.83 AÊ as

calculated by LSQKAB (Kabsch, 1978). Analysis of the

superimposed molecules to identify rigid and ¯exible regions

was inconclusive.

With 826 non-H atoms corresponding to 7438 parameters

re®ned against 33 449 diffraction intensities, the inversion of

the full least-squares matrix for this structure is feasible using

currently available computers (the matrix inversion takes

about 5.8 h of CPU time on a Pentium II CPU running at

450 MHz and requires a total of 112 MB of memory). The

mean positional error for C� atoms is 0.11 � 0.08 AÊ , with a

minimum of 0.034 AÊ for C�(A12) and a maximum of 0.49 AÊ

for C�(D8). Most of the s.u.s fall within the range 0.05±0.15 AÊ

(Fig. 1). These values are high for a structure re®ned at atomic

resolution and re¯ect the loss in precision owing to mero-

hedral twinning and the intrinsic ¯exibility of parts of the

structure. Elevated estimated standard uncertainties higher

than 0.2 AÊ and ranging up to 0.5 AÊ are found for parts of

molecules C and D. Fig. 1 also shows a remarkably good linear

correlation between B values and coordinate errors, which

however breaks down for very high B values.

Difference distance matrices displayed with a lower cutoff

of 0.3 AÊ gave rise to the suspicion that the C-terminal half of

the molecule was more rigid than the N-terminal half (Fig. 2,

lower left half): the matrices between molecules C and B,

between molecules F and B and between C and E molecules

show differences smaller than 0.3 AÊ for the interatomic

distances within the C-terminal half of the molecules. Quali-

tatively, this behaviour can also be found in the other matrices,

but they are too noisy to allow a ®rm conclusion.

Calculation of error-scaled difference distance matrices

considerably improved the situation (Fig. 2, upper right half).

If a lower cutoff of 3.0���ab
ij � is employed for display, the noise

is dramatically reduced while maintaining suf®cient signal,

now supporting the hypothesis of conformational invariance

for the C-terminus with respect to all pairs of molecules except

the combinations A$B, A$D and A$F. It should be noted

that with regard to the pairs found to de®ne conformationally

invariant regions already from ordinary difference distance

matrices (C$B, F$B, F$C, F$E) the situation does not

change after error scaling. The most pronounced effect of

error scaling is seen for the comparison of molecules C and E:

ordinary difference distance matrices had shown a large

number of differences ranging up to 1 AÊ , but after error

scaling it becomes apparent that both molecules are in fact

identical within errors. This may in part be because of the

particularly large errors observed for molecule C, which

require the conformational difference to be large to be

signi®cant. Interestingly, the error-scaled matrix between the

two least well de®ned molecules, C and D, still shows signi®-

cant features. These features involve the N-termini of both

molecules, which are in fact the relatively best de®ned (Fig. 1)

regions of molecules C and D, owing to the monosul®de

bridge present between residues Cys1 and Aba2. For such well

de®ned parts, smaller differences in coordinates are suf®cient

to be signi®cant.

Based on the error-scaled difference distance matrices,

residues 12±20 of mersacidin can be regarded as forming a

rigid domain. Least-squares superposition, employing C�

atoms of residues 12±20, gave r.m.s.d.s between superimposed

C� atoms ranging from 0.11 to 0.36 AÊ , with a mean value of

0.21 AÊ . The superimposed molecules provide an interesting

view, clearly dividing the molecule into a rigid and a ¯exible

part (Schneider et al., 2000). In fact, the C-terminal region has

also been found to be rigid in an NMR study (Prasch et al.,

1997) and a highly homologous region is found in the related

molecule actagardine (Zimmermann & Jung, 1997), suggesting

a functional role.

Figure 3
Least-squares superposition of six molecules of mersacidin based on the
C� atoms of residues 12±20. The backbone is shown in light grey and the
side chain of Glu17 in dark grey and red. The ®gure was drawn with
MOLSCRIPT (Kraulis, 1991) and Raster3D (Bacon & Anderson, 1988;
Merritt & Murphy, 1994).

Figure 4
B values for C� atoms in the crystal structure of tryptophan synthase in
complex with F-IPP (TRPSF-IPP) in black and in complex with F-IPP and
amino-acrylate (TRPSF-IPP

A-A ) in red.



4. Second example: domain motion in tryptophan
synthase

Tryptophan synthase catalyses the last two reactions in the

biosynthesis of tryptophan, the cleavage of indole 3-glycerol

phosphate (IGP) to indole and glyceraldehyde 3-phosphate

(�-reaction) and the subsequent condensation of indole with

serine to form tryptophan (�-reaction) (Hyde & Miles, 1990).

The reactions take place at two active centres which are

separated by a distance of more than 25 AÊ , but nevertheless

are precisely synchronized (Anderson et al., 1991). In a study

aimed at the understanding of the interaction between the two

active sites, crystal structures of the enzyme in complex with

the substrate analogue 5-¯uoroindole propanol phosphate

(TRPSF-IPP; PDB entry 1a50) and in complex with both F-IPP

and l-serine (TRPSF-IPP
A-A , where `A-A' stands for the amino-

acrylate that is formed at the �-site under the experimental

conditions chosen; PDB entry 1a5s) were determined

(Schneider et al., 1998).

Both crystal structures have similar statistics (see caption

for Fig. 5) and a least-squares superposition based on C�

atoms gave an r.m.s.d. of 0.28 AÊ , which is very close to the

mean positional errors as determined by the �A method

(Read, 1986), 0.21 AÊ for TRPSF-IPP and 0.27 AÊ for TRPSF-IPP
A-A

(Schneider et al., 1998). The least-squares superposition did

not reveal any speci®c features. Ordinary difference distance

matrices (Fig. 5, lower left half) were decidedly noisy.

As no individual s.u.s for atomic coordinates were available

from the re®nement, estimates for the radial error of an atom

with an average B factor, �DPI
r �Bavg�, were determined using

Cruickshank's formalism. The values

obtained for �DPI
r (Bavg) were 0.21 and

0.24 AÊ for TRPSF-IPP and TRPSF-IPP
A-A ,

respectively, which is in very good

agreement with error estimates derived

by the �A method (see above). Standard

uncertainties for individual atoms were

then estimated following (7) after

replacing B factors of lower than 10 AÊ 2

by a value of 10 AÊ 2 in order to avoid

unrealistically low error estimates

stemming from underestimated B

factors. The individual s.u.s have mean

values of 0.22 and 0.24 AÊ , respectively.

They range from 0.14 to 0.80 AÊ and from

0.24 to 0.79 AÊ for TRPSF-IPP and

TRPSF-IPP
A-A , respectively. The resulting

error-scaled difference matrix for resi-

dues 3±389 of the �-subunit of trypto-

phan synthase was displayed after 3 � 3

binning and revealed a much clearer

picture (Fig. 5, upper right half). The

region corresponding to residues 125±

180 is of particular interest, as this

region of the molecule has elevated B

values in both crystal structures (Fig. 4).

Consequently, the corresponding part or

the normal difference distance matrix is

quite noisy. Translating the B values of

the C� atoms into approximate standard

uncertainties (7) and employing these

for the calculation of the error-scaled

difference distance matrix ¯attens out

this part while preserving the signal in

the rest of the matrix. The presence of

large `empty' blocks along the diagonal

proves the presence of three conforma-

tionally invariant regions I, II and III,

comprising residues 3±101, 102±189 and

190±389, respectively. Furthermore,

regions I and III do not move relative to

one another, whereas region II moves
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Figure 5
Difference distance matrix between the structures of tryptophan synthase in complex with F-IPP
(TRPSF-IPP) and in complex with F-IPP and amino-acrylate (TRPSF-IPP

A-A ). In the lower left half, the
ordinary difference matrix is displayed using a lower cutoff of 0.25 AÊ , approximately corresponding
to the 1� level as determined by the �A method. For scaling, an upper cutoff of 2.0 AÊ has been
employed. In the upper right half, the error-scaled difference distance matrix is displayed using
upper and lower cutoffs of 1.0 and 2.5�, respectively. Both matrices underwent 3 � 3 binning prior
to being displayed. Individual coordinate errors were estimated using (7) employing the following
values for the parameters: TRPSF-IPP: Ni = 5191, nobs = 31627, C = 0.965, Rfree = 0.221, dmin = 2.29 AÊ ;
TRPSF-IPP

A-A : Ni = 5148, nobs = 30327, C = 0.938, Rfree = 0.247, dmin = 2.30 AÊ .
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closer to both region I and III in TRPSF-IPP
A-A with respect to

TRPSF-IPP, indicated by the blue blocks in Fig. 3. Interestingly,

both residues at the border between regions I and II and II

and III are glycines that act as hinges to support a rigid-body

motion of domain II upon formation of the reactive inter-

mediate at the �-site. Superposition of TRPSF-IPP and

TRPSF-IPP
A-A based on 557 C� atoms from all residues except

those belonging to region II results in a slightly reduced

r.m.s.d. of 0.24 AÊ ; the graphical representation clearly shows

the motion of region II relative to the rest of the protein

(Fig. 6). This domain movement triggered by structural

changes at the �-site facilitates the transmission of informa-

tion to the �-site across a distance of more than 25 AÊ

(Schneider et al., 1998).

5. Conclusions and perspectives

Difference distance matrices are a useful tool for deriving

conformationally invariant regions by comparison of struc-

tures of related molecules. If estimates of individual

coordinate errors are available, these errors can be propa-

gated through the calculation and used to signi®cantly reduce

the noise in difference distance matrices.

In principle, the error of any interatomic distance in a

structural model derived from crystallographic data can be

rigorously determined by inversion of the full least-squares

matrix and taking into account the variances and covariances

of all re®ned parameters contributing to the calculation of that

particular distance (Sands, 1966; Huml, 1987). However, in

practice, there are two complications, the ®rst being that

inversion of the full-matrix is not feasible in many cases owing

to the sheer size of the computational task. The second

complication concerns the use of covariances between re®ned

parameters: if covariances are included in the estimation of

uncertainties, the full variance/covariance matrix has to be

available when the calculations are performed. This requires

computer memory of the same size as is necessary for the

matrix inversion itself. Both problems will be alleviated with

increasing computer power. In the method presented, the

covariances between re®ned parameters are neglected.

Inclusion of covariances in the future will provide more

accurate error estimates, which in turn will lead to a higher

accuracy of the resulting error-scaled difference matrices.

Meanwhile, in cases where matrix inversion is too compu-

tationally expensive, approximations can be made to derive

approximate positional errors for individual atoms. Several

approaches based on analysis of the re®nement process have

been described (Cox & Cruickshank, 1948; Cruickshank, 1949,

1999; Murshudov & Dodson, 1997) and measures of relative

precision of atomic coordinates based on the analysis of

electron densities in terms of a real-space correlation coef®-

cient (Zhou et al., 1998) may represent useful alternatives.

Once the uncertainties in the coordinates of individual

atoms have been estimated, they can, independently of their

source and size, be propagated through the calculation in a

consistent manner, ®nally yielding an error-scaled difference

distance matrix. In particular, error propagation allows the

straightforward comparison of models with very different

levels of precision: for example, a structure determined at

atomic resolution with s.u.s obtained by full-matrix inversion

can be compared with a structure where the experimental data

are not available and the level of precision of individual

atomic coordinates has to be derived by some rough approx-

imation.

To rationalize the enormous amount of information, an

intuitive graphical interpretation plays a central role. The

present implementation allows on-line variation of error

models and scaling parameters to clarify the picture. In fact,

the interpretation of difference distance matrices can be

regarded as a process similar to the interpretation of electron

densities in crystallographic model building: even if the scale

used to present the information is not correct in an absolute

sense, correct relative scaling allows to enhance important

features, hence facilitating interpretation.

The applications discussed in the present paper pertain to

comparison of C� positions in protein molecules with identical

sequences where the correspondence of pairs of residues is

clearly de®ned. In cases where the sequences are not 100%

identical but still closely related, for example in the presence

of point mutations or short insertions or deletions, non-

equivalent regions can be manually excluded from the

comparison process to allow an assignment of corresponding

residues.

In addition to comparisons of the polypeptide backbone,

the algorithm is equally applicable to any groups of atoms, for

example the atoms surrounding an active site, where the

discrimination between signi®cant and insigni®cant changes

upon binding of a ligand or the mutation of an amino acid can

be of importance in understanding functional aspects.

Algorithms for automatic identi®cation of conformationally

invariant parts of molecules based on difference distance

matrices have been described (Nichols et al., 1995; Perry et al.,

1990) and clearly pro®t from a more rigorous treatment of

errors. Once identi®ed, conformationally invariant regions can

be used for automatic superposition of molecules, which in

Figure 6
Backbone traces of TRPSF-IPP and TRPSF-IPP

A-A after least-squares super-
position based on all C� atoms except those of residues Gly102±Gly189 of
the � chain. Residues Gly102±Gly189 of the �-chain are shown as thick
lines. The �-site inhibitor F-IPP and the �-site cofactor pyridoxal
50-phosphate are shown in grey to indicate the location of the active sites.
Backbone traces were drawn with MOLSCRIPT (Kraulis, 1991).



turn enables the detection of signi®cant differences. Even-

tually, an algorithmic de®nition of a superposition procedure

taking experimental errors into account rigorously both in the

selection of the atoms used for superposition and in the

superposition process itself could allow an automatic and thus

objective comparison of macromolecular structures.

I am grateful to George M. Sheldrick for helpful discussions

and encouragement. A beta test version of the program

ESCET to calculate and display error-scaled difference

distance matrices is available from the author upon request.
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